CIRCUITOS ELECTRICOS

CIRCUITOS RC

Los circuitos RC son circuitos que están compuestos por una resistencia y un condensador.
Se caracteriza por que la corriente puede variar con el tiempo. Cuando el tiempo es igual a cero, el condensador está descargado, en el momento que empieza a correr el tiempo, el condensador comienza a cargarse ya que hay una corriente en
el circuito. Debido al espacio entre las placas del condensador, en el circuito no circula corriente, es por eso que se utiliza una resistencia.

Cuando el condensador se carga completamente, la corriente en el circuito es igual a cero.
La segunda regla de Kirchoff dice: V = (IR) - (q/C)
Donde q/C es la diferencia de potencial en el condensador.
En un tiempo igual a cero, la corriente será: I = V/R cuando el condensador no se ha cargado.
Cuando el condensador se ha cargado completamente, la corriente es cero y la carga será igual a: Q = CV
CARGA DE UN CONDENSADOR

Ya se conoce que las variables dependiendo del tiempo serán I y q. Y la corriente I se sustituye por dq/dt (variación de la carga dependiendo de la variación del tiempo):
(dq/dt)R = V - (q/C)
dq/dt = V/R - (q/(RC))
Esta es una ecuación
Diferencial. Se pueden dq/dt = (VC - q)/(RC)
Separar variable dq/(q - VC) = - dt/(RC)
Al integrar se tiene ln [ - (q - VC)/VC)] = -t/(RC)
Despejando q q dt = C V [(1 - e-t/RC )] = q (1- e-t/RC ) El voltaje será Descripción: Circuitos


DESCARGA DE UN CONDENSADOR


Debido a que la diferencia de potencial en el condensador es IR = q/C, la razón de cambio de carga en el condensador determinará la corriente en el circuito, por lo tanto, la ecuación que resulte de la relación entre el cambio de la cantidad de carga dependiendo del cambio en el tiempo y la corriente en el circuito, estará dada remplazando I = dq/dt en la ecuación de diferencia de potencial en el condensador:


Donde Q es la carga máxima
La corriente en función del tiempo entonces, resultará al derivar esta ecuación respecto al tiempo:



Se puede concluir entonces, que la corriente y la carga decaen de forma exponencial.

CIRCUITO RL

Los circuitos RL son aquellos que contienen una bobina (inductor) que tiene autoinductancia, esto quiere decir que evita cambios instantáneos en la corriente. Siempre se desprecia la autoinductancia en el resto del circuito puesto que se considera mucho menor a la del inductor.

Para un tiempo igual a cero, la corriente comenzará a crecer y el inductor producirá igualmente una fuerza electromotriz en sentido contrario, lo cual hará que la corriente no aumente. A esto se le conoce como fuerza contraelectromotriz.

Esta fem está dada por: V = -L (inductancia) dI/dt

Debido a que la corriente aumentará con el tiempo, el cambio será positivo (dI/dt) y la tensión será negativa al haber una caída de la misma en el inductor.

Según kirchhoff: V = (IR) + [L (dI / dt)]

IR = Caída de voltaje a través de la resistencia.

Esta es una ecuación diferencial y se puede hacer la sustitución:

x = (V/R) - I es decir; dx = -dI

Sustituyendo en la ecuación: x + [(L/R)(dx/dt)] = 0

dx/x = - (R/L) dt

Integrando: ln (X/Xo) = -(R/L) t

Despejando X:

Debido a que Xo = V/R

El tiempo es cero

Y corriente cero

El tiempo del circuito está representado por  = L/R

I = (V/R) (1 - e - 1/)

Donde para un tiempo infinito, la corriente de la malla será I = V/R. Y se puede considerar entonces el cambio de la corriente en el tiempo como cero.

Para verificar la ecuación que implica a  y a I, se deriva una vez y se reemplaza en la inicial: dI/dt = V/L e - 1/

Se sustituye: V = (IR) + [L (dI / dt)]

V = [ (V/R) (1 - e - 1/)R + (L V/ L e - 1/)]

V - V e - 1/ = V - V e - 1/

OSCILACIONES EN UN CIRCUITO LC


Cuando un condensador se conecta a un inductor, tanto la corriente como la carga den el condensador oscila. Cuando existe una resistencia, hay una disipación de energía en el sistema porque una cuanta se convierte en calor en la resistencia, por lo tanto las oscilaciones son amortiguadas. Por el momento, se ignorará la resistencia.

En un tiempo igual a cero, la carga en el condensador es máxima y la energía almacenada en el campo eléctrico entre las placas es U = Q2máx/(2C). Después de un tiempo igual a cero, la corriente en el circuito comienza a aumentar y parte de la energía en el condensador se transfiere al inductor. Cuando la carga almacenada en el condensador es cero, la corriente es máxima y toda la energía está almacenada en el campo eléctrico del inductor. Este proceso se repite de forma inversa y así comienza a oscilar.
En un tiempo determinado, la energía total del sistema es igual a la suma de las dos energías (inductor y condensador): U = Uc + UL
U = [ Q2/(2C) ] + ( LI2/2 )

CIRCUITO RCL
EN CORRIENTE ALTERNA

En este artículo se hará un repaso de los circuitos básicos, formados por resistencias (R), condensadores (C) y bobinas (L), cuando se alimentan por una fuente de tensión alterna senoidal. En corriente alterna aparecen dos nuevos conceptos relacionados con la oposición al paso de la corriente eléctrica. Se trata de la reactancia y la impedancia. Un circuito presentará reactancia si incluye condensadores y/o bobinas. La naturaleza de la reactancia es diferente a la de la resistencia eléctrica. En cuanto a la impedancia decir que es un concepto totalizador de los de resistencia y reactancia, ya que es la suma de ambos. Es por tanto un concepto más general que la simple resistencia o reactancia.

El más simple y sencillo:

Empezaremos con un circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal:

La tensión vg tendrá un valor instantáneo que vendrá dado en todo momento por

En corriente alterna la oposición al paso de la corriente eléctrica tiene dos componentes, una real y otra imaginaria. Dicha oposición ya no se llama resistencia sino impedancia, Z. La impedancia se expresa mediante un número complejo, por ejemplo de la forma a + jb, siendo a la parte real del número complejo y b su parte imaginaria. Pues bien, una resistencia presenta una impedancia que sólo tiene componente real, ya que la su componente imaginaria es de valor cero. Tendremos entonces que en el caso que nos ocupa la impedancia total del circuito será igual al valor que presente la resistencia R, ya que no existe ningún otro elemento en el circuito. Así pues:

Tras lo visto, podemos calcular el valor de la corriente i que circula por el circuito aplicando la Ley de Ohm:

Tenemos pues que i será, al igual que la tensión vg, de tipo alterna senoidal. Además, como el argumento de la función seno es el mismo en ambos casos, la corriente i estará en fase con la tensión vg:

Sin embargo la mejor forma de conocer, calcular y visualizar los circuitos, los podemos hacer desde el siguiente software:

haz click para descargar los 2 software que a continuación se presentan. el tutor estará en la siguiente página.

Solve Elec

Solve Elec para MAC

Logic Circuit*

*éste software no esta disponible para Mac