GENERACIÓN INDUSTRIAL DE CORRIENTE ALTERNA

Si por ejemplo, duplicamos la resistencia, las pérdidas de

 se duplicarían, pero si en cambio duplicamos la corriente, las perdidas se cuadruplican. Esto nos indica que lo mejor para reducir pérdidas de  lo más indicado es reducir la corriente. Pero esto sería un inconveniente para los que reciben la energía eléctrica.

Esto nos indica que lo mejor para reducir pérdidas de potencia lo más indicado es reducir la corriente. Pero esto sería un inconveniente para los que reciben la energía eléctrica, porque es en esta parte donde se necesita tener altas corrientes. Lo ideal es un método por el cual se transmita a bajas corrientes y se eleven al final y esto es posible gracias a la corriente alterna

Toda fuente de potencia tiene por objeto producir una tensiòn o diferencia de potencial en sus terminales y mantener esta tensión cuando el circuito se cierra y fluye corriente. Cuando las fuentes son de corriente directa, como ya se dijo, no cambia la polaridad, o sea el positivo es siempre positivo y el negativo, negativo, la corriente fluye del negativo hacia el positivo, siempre. Lo cual no sucede con las fuentes de corriente alterna ya que en un momento una terminal serà negativa y en otro positiva, y asì sucesivamente. No hay que olvidar que la corriente fluye del negativo al positivo aùn en la corriente alterna. Cuando una fuente es de corriente alterna se llama alternador o generador. Estos generadores combinan el movimiento fìsico y el magnetismo para producir la corriente. Consta de un imán permanente y un  de bobinas que al girar cortan las lìneas del campo magnètico y se produce la fuerza electromotriz (fem).

Un generador elemental consta de una espira de alambre que se hacer girar dentro de un imán permanente, los extremos del alambre se conectan a unos anillos(uno por cada punta del alambre) sobre los cuales se colocan unos carbones de donde se toma la corriente.
En la figura se ilustra un generador elemental, los rectàngulos pequeños son los carbones, los màs grandes, los anillos, el àrea gris es el imán, el àrea cafè la bobina y una làmpara para indicar que existe una corriente eléctrica.

Cuando la Bobina gira, existe una tensiòn en cada posiciòn de la misma. La bobina en cada vuelta da un giro de 360 grados, o sea el movimiento angular, si en cualquiera de los punto de la circunferencia que describe la bobina se trazan lìneas al centro del cìrculo, a la distancia entre las lìneas se le llama grado

a una lìnea desde fuera de la circunferencia al centro se le llama , o sea que a dos radios cualquiera, se le llama grado.

El efecto es el mismo, no importando la direcciòn de la corriente, ejemplo: cuando por un resistor fluye una corriente, produce calor, ya sea esta directa o alterna, entonces el calor es el efecto que se producirà en el resistor, en el ciclo positivo o negativo de la corriente alterna.
La primera corriente descubierta y por lo mismo usada, fue la corriente directa (C.D.), pero en cuanto se descubrió la corriente alterna, esta fue sustituyendo a la anterior. Hoy, el uso de la corriente alterna podemos decir que es la que mayormente se usa en el mundo, aunque en algunos lugares, se sigue usando corriente directa.

La razòn de esta diferencia en el uso, se debe a que se aplica lo mismo que la corriente directa, con la ventaja que producirla y llevarla hasta los hogares es màs barato y fàcil, otra de las razones es que la corriente alterna se puede aplicar donde no lo podemos hacer con la C.D. Hay que hacer la salvedad que la corriente alterna no es adecuada para algunas , solamente se puede usar corriente directa, por ejemplo los circuitos de los  electrónicos no funcionarían con corriente alterna, por lo mismo se hace la conversiòn a corriente directa por medio de rectificadores y filtros.

FORMAS INDUSTRIALES DE GENERACION DE CORRIENTE ALTERNA

ENERGIA HIDROELÉCTRICA

El aprovechamiento de la energía potencial acumulada en el agua para generar electricidad es una forma clásica de obtener energía. Alrededor del 20% de la electricidad usada en el mundo procede de esta fuente. Es, por tanto, una energía renovable pero no alternativa, estrictamente hablando, porque se viene usando desde hace muchos años como una de las fuentes principales de electricidad.

La energía hidroeléctrica que se puede obtener en una zona depende de los cauces de agua y desniveles que tenga, y existe, por tanto, una cantidad máxima de energía que podemos obtener por este procedimiento. Se calcula que si se explotara toda la energía hidroeléctrica que el mundo entero puede dar, sólo se cubriría el 15% de la energía total que consumimos. En realidad se está utilizando alrededor del 20% de este potencial, aunque en España y en general en los países desarrollados, el porcentaje de explotación llega a ser de más del 50%.

Desde el punto de vista ambiental la energía hidroeléctrica es una de las más limpias, aunque esto no quiere decir que sea totalmente inocua, porque los pantanos que hay que construir suponen un impacto importante. El pantano altera gravemente el ecosistema fluvial. Se destruyen habitats, se modifica el caudal del río y cambian las características del agua como su temperatura, grado de oxigenación y otras. También los pantanos producen un importante impacto paisajístico y humano, porque con frecuencia su construcción exige trasladar a pueblos enteros y sepultar bajo las aguas tierras de cultivo, bosques y otras zonas silvestres.

Los pantanos también tienen algunos impactos ambientales positivos. Así, por ejemplo, han sido muy útiles para algunas aves acuáticas que han sustituido los humedales costeros que usaban para alimentarse o criar, muchos de los cuales han desaparecido, por estos nuevos habitats. Algunas de estas aves han variado incluso sus hábitos migratorios, buscando nuevas rutas de paso por la Península a través de determinados pantanos.

La construcción de pantanos es cara, pero su costo de explotación es bajo y es una forma de energía rentable económicamente. Al plantearse la conveniencia de construir un pantano no hay que olvidar que su vida es de unos 50 a 200 años, porque con los sedimentos que el río arrastra se va llenando poco a poco hasta inutilizarse.

ENERGÍA TERMOELÉCTRICA
  1. Cinta transportadora
  2. Tolva
  3. Molino
  4. Caldera
  5. Cenizas
  6. Sobrecalenmtador
  7. Recalentador
  8. Economizador
  9. Calentador de aire
  10. Precipitador
  11. Chimenea
  12. Turbina de alta presión
  13. Turbina de media presión
  14. Turbina de baja presión
  15. Condensador
  16. Calentadores
  17. Torre de refrigeración
  18. Transformadores
  19. Generador
  20. Línea de transporte de energía electrica

Se denominan centrales termoeléctricas clásicas o convencionales aquellas centrales que producen energía eléctrica a partir de la combustión de carbón, fuelóil o gas en una caldera diseñada al efecto. El apelativo de "clásicas" o "convencionales" sirve para diferenciarlas de otros tipos de centrales termoeléctricas (nucleares y solares, por ejemplo), las cuales generan electricidad a partir de un ciclo termodinámico, pero mediante fuentes energéticas distintas de los combustibles fósiles empleados en la producción de energía eléctrica desde hace décadas y, sobre todo, con tecnologías diferentes y mucho mas recientes que las de las centrales termoeléctricas clásicas.

Independientemente de cuál sea el combustible fósil que utilicen (fuel-oil, carbón o gas), el esquema de funcionamiento de todas las centrales termoeléctricas clásicas es prácticamente el mismo. Las únicas diferencias consisten en el distinto tratamiento previo que sufre el combustible antes de ser inyectado en la caldera y en el diseño de los quemadores de la misma, que varían según sea el tipo de combustible empleado.

Una central termoeléctrica clásica posee, dentro del propio recinto de la planta, sistemas de almacenamiento del combustible que utiliza (parque de carbón, depósitos de fuel-oil) para asegurar que se dispone permenentemente de una adecuada cantidad de éste. Si se trata de una central termoeléctrica de carbón (hulla, antracita, lignito,...) es previamente triturado en molinos pulverizadores hasta quedar convertido en un polvo muy fino para facilitar su combustión. De los molinos es enviado a la caldera de la central mediante chorro de aire precalentado.
Si es una central termoeléctrica de fuel-oil, éste es precalentado para que fluidifique, siendo inyectado posteriormente en quemadores adecuados a este tipo de combustible.
Si es una central termoeléctrica de gas los quemadores están asimismo concebidos especialmente para quemar dicho combustible.
Hay, por último, centrales termoeléctricas clásicas cuyo diseño les permite quemar indistintamente combustibles fósiles diferentes (carbón o gas, carbón o fuel-oil, etc.). Reciben el nombre de centrales termoeléctricas mixtas.

Una vez en la caldera, los quemadores provocan la combustión del carbón, fuel-oil o gas, generando energía calorífica. Esta convierte a su vez, en vapor a alta temperatura el agua que circula por una extensa red formada por miles de tubos que tapizan las paredes de la caldera. Este vapor entre a gran presión en la turbina de la central, la cual consta de tres cuerpos -de alta, media y baja presión, respectivamente- unidos por un mismo eje.

En el primer cuerpo (alta presión) hay centenares de álabes o paletas de pequeño tamaño. El cuerpo a media presión posee asimismo centenares de álabes pero de mayor tamaño que los anteriores. El de baja presión, por último, tiene álabes aún más grandes que los precedentes. El objetivo de esta triple disposición es aprovechar al máximo la fuerza del vapor, ya que este va perdiendo presión progresivamente, por lo cual los álabes de la turbina se hacen de mayor tamaño cuando se pasa de un cuerpo a otro de la misma., Hay que advertir, por otro lado, que este vapor, antes de entrar en la turbina, ha de ser cuidadosamente deshumidificado. En caso contrario, las pequeñísimas gotas de agua en suspensión que transportaría serían lanzadas a granvelocidad contra los álabes, actuando como si fueran proyectiles y erosionando las paletas hasta dejarlas inservibles.

El vapor de agua a presión, por lo tanto, hace girar los álabes de la turbina generando energía mecánica. A su vez, el eje que une a los tres cuerpos de la turbina (de alta, media y baja presión) hace girar al mismo tiempo a un alternador unido a ella, produciendo así energía eléctrica. Esta es vertida a la red de transporte a alta tensión mediante la acción de un transformador.

Por su parte, el vapor -debilitada ya su presión- es enviado a unos condensadores. Allí es enfriado y convertido de nuevo en agua. Esta es conducida otra vez a los tubos que tapizan las paredes de la caldera, con lo cual el ciclo productivo puede volver a iniciarse.

ENERGÍA EOLICA

La energía eólica pertenece al conjunto de las energías renovables o también denominadas energías alternativas. La energía eólica es el tipo de energía renovable más extendida a nivel internacional por potencia instalada (Mw) y por energía generada (Gwh).

La energía eólica procede de la energía del sol (energía solar), ya que son los cambios de presiones y de temperaturas en la atmósfera los que hacen que el aire se ponga en movimiento, provocando el viento, que los aerogeneradores aprovechan para producir energía eléctrica a través del movimiento de sus palas (energía cinética).

ENERGÍA FOTOVOLTAICA

Las centrales fotovoltaicas son instalaciones donde se transforma directamente la radiación solar en energía eléctrica. Una central fotovoltaica debe estar situada en regiones con una alta irradiación solar. Regiones como el Mediterráneo son idóneas para la instalación de grandes centrales fotovoltaicas o huertos solares. Actualmente España es uno de los principales productores de energía fotovoltaica del mundo. En el 2008 la potencia instalada en España fue de unos 2.500 MW. Para el 2020 se espera que la energía fotovoltaica suministre el 12% de la energía eléctrica en la Unión Europea.

En las centrales fotovoltaicas se consigue producir energía eléctrica gracias al efecto fotovoltaico que consiste en que determinados materiales (células fotovoltaicas) al incidir sobre ellos una corriente de fotones (radiación solar) generan una corriente de electrones. Actualmente las células fotovoltaicas son de silicio, el objetivo es encontrar nuevos materiales que aumenten el rendimiento de estas células.

Las centrales fotovoltaicas, gracias a la investigación para conseguir células fotovoltaicas con un mayor rendimiento y la reducción de costes en su fabricación, pueden ser la alternativa a los combustibles de origen fósil. El impulso que ha sufrido el sector fotovoltaico gracias a las primas impuestas por el gobierno debe dar paso al pleno rendimiento económico de las centrales fotovoltaicas y de las centrales termosolares.

Además de los aspectos económicos de las centrales fotovoltaicas también debemos tener muy en cuenta los grandes beneficios medioambientales que la implantación generalizada de la energía solar nos puede traer. Una energía renovable y limpia, sin los efectos negativos de las energías convencionales.

ENERGÍA NUCLOELECTRICA

El sistema más usado para generar energía nuclear utiliza el uranio como combustible. En concreto se usa el isótopo 235 del uranio que es sometido a fisión nuclear en los reactores. En este proceso el núcleo del átomo de uranio (U-235) es bombardeado por neutrones y se rompe originándose dos átomos de un tamaño aproximadamente mitad del de uranio y liberándose dos o tres neutrones que inciden sobre átomos de U-235 vecinos, que vuelven a romperse, originándose una reacción en cadena.

La fisión controlada del U-235 libera una gran cantidad de energía que se usa en la planta nuclear para convertir agua en vapor. Con este vapor se mueve una turbina que genera electricidad.

El mineral de uranio se encuentra en la naturaleza en cantidades limitadas. Es por tanto un recurso no renovable. Suele hallarse casi siempre junto a rocas sedimentarias. Hay depósitos importantes de este mineral en Norteamérica (27,4% de las reservas mundiales), Africa (33%) y Australia (22,5%).

El mineral del uranio contiene tres isótopos: U-238 (9928%), U-235 (0,71%) y U-234 (menos que el 0,01%). Dado que el U-235 se encuentra en una pequeña proporción, el mineral debe ser enriquecido (purificado y refinado), hasta aumentar la concentración de U-235 a un 3%, haciéndolo así útil para la reacción.

El uranio que se va a usar en el reactor se prepara en pequeñas pastillas de dióxido de uranio de unos milímetros, cada una de las cuales contiene la energía equivalente a una tonelada de carbón. Estas pastillas se ponen en varillas, de unos 4 metros de largo, que se reúnen en grupos de unas 50 a 200 varillas. Un reactor nuclear típico puede contener unas 250 de estas agrupaciones de varillas.

Regreso a Generación Industrial de C/A

Regreso a Energía Hidroeléctrica

Regreso a Energía Termoeléctrica

Regreso a Energía Eolítica

Regreso a EnergíaFotovoltaica

Regreso a Energía Nucloeléctrica