MISCIBILIDAD-MEZCLAS BINARIAS

Si consideramos la mezcla a P y T constante de dos líquidos A y B, en cantidades nA y nB, esta se producirá cuando G disminuya, es decir cuando la energía libre de la mezcla sea menor que la energía libre de los dos componentes puros. Así si definimos la energía libre de mezcla ΔGmezcla como el cambio en la energía libre del sistema al llevar a cabo el proceso de mezclar ambos líquidos: , y por mol de mezcla: , que debe ser < 0 para que el proceso tenga lugar.

La ΔGmezcla, a T y P constantes, puede variar con la composición del sistema (con la fracción molar de sus componentes), según se representa esquemáticamente en la figura:

  • En (a) la ΔGmezcla es negativa en todo el rango de composición, por lo que ambos líquidos son totalmente miscibles a la presión y temperatura implicadas.
  • En (b) ΔGmezcla >0, por lo que ambos líquidos son inmiscibles, a la P y T de trabajo
  • En (c) se representa una situación más compleja. ΔGmezcla <0, luego ambos líquidos son miscibles. Sin embargo, si la mezcla tiene una composición entre χ1 y χ2, ΔGmezcla es menor si el sistema se separa en dos fases, de composición χ1 y χ2 respectivamente. Se habla en este caso de que a la P y T de trabajo los líquidos son parcialmente miscibles. Los líquidos son miscibles en composición χ<χ1 y χ> χ2, pero no en composiciones intermedias.

Para entender cómo es posible que dos líquidos sean parcialmente miscibles a una T y P, y que en otras condiciones sean totalmente miscibles o inmiscibles, basta con analizar cuales son las contribuciones de la entalpía y de la entropía al proceso de mezcla, y ver por ejemplo cual es el efecto que produce la variación de la T: ;. En general, ΔSmezcla>0, luego ΔGmezcla <0 si ΔHmezcla <0, o si ΔHmezcla >0 pero menor que el término (-TΔSmezcla). Aunque consideráramos que ΔHmezcla y ΔSmezcla varían poco con la T si la variación de esta no es muy grande, una variación de T puede implicar un cambio de signo en ΔGmezcla, pudiéndose obtener diagramas de fase líquido-líquido más o menos complejos como los de la figura, en los que la P se mantiene constante, y en los que se observan puntos de temperatura crítica inferior, temperatura inferior de cosolubilidad (LCST), de temperatura crítica superior, temperatura superior de cosolubilidad (UCST), o ambos respectivamente.

EQUILIBRIO GAS LIQUIDO (MEZCLAS BINARIAS)

Hemos visto que a una T y P dadas, en un sistema constituido por dos fases (ej. líquido y gas) de una sustancia pura, el equilibrio termodinámico se produce cuando los potenciales químicos de la sustancia son iguales en ambas fases: . En el caso de una mezcla homogénea de varias sustancias, disolución, el equilibrio material se produce igualmente cuando los potenciales químicos de cada una de las sustancias son iguales en ambas fases.

Por sencillez, vamos a considerar que las sustancias que forman la mezcla binaria en fase gaseosa se comportan como gases ideales, y que en fase líquida constituyen una disolución ideal (los dos componentes líquidos son estructuralmente y químicamente muy similares, de forma que las interacciones moleculares soluto-disolvente, soluto-soluto y disolvente-disolvente son iguales).

Una característica de las disoluciones ideales es que a una temperatura dada, cada componente de la disolución ejerce una presión de vapor que es proporcional a su fracción molar en la fase líquida (χi) y a la presión de vapor del componente puro a esa temperatura (P°1), (Ley de Raoult):

Recordando que el potencial químico de un gas ideal (i) en una mezcla de gases es: ; y teniendo en cuenta que en equilibrio, para cada componente se debe cumplir , se obtiene que el potencial químico de cada componente de la disolución ideal en la fase líquida a una T dada, es: .

Si χi=1, se tiene el líquido puro, pudiéndose definir el potencial químico de una sustancia pura en fase líquida como , que depende de la temperatura y de la presión de vapor del compuesto puro a dicha temperatura. Así, en el caso de disoluciones ideales, el potencial químico de cada componente en la fase líquida vendrá dado por la expresión: .

En la formación de una disolución ideal a T y P constantes, . Si se considera la formación de un mol de disolución ideal: . Por tanto la formación de una disolución ideal es siempre un proceso espontáneo. Además, por ser muy similares las moléculas de soluto y disolvente, y las interacciones entre ellas, no hay cambio en el volumen al realizar la disolución ideal, ΔVmezcla=0, ni cambio en la entalpía, ΔHmezcla=0. En consecuencia, la variación de entropía en el proceso será:

  • Relaciones presión-composición y temperatura-composición en disoluciones ideales

Si la disolución es ideal, ambos componentes obedecen la ley de Raoult, luego la presión total es una función lineal de la fracción molar de cualquiera de los dos componentes en la fase líquida (χi):

Para conocer la relación entre la presión total del sistema y la composición del vapor, basta suponer el comportamiento ideal del gas: la presión parcial de cada gas (Pi) será igual a la presión total (P) por su fracción molar (yi), es decir, se cumple la ley de Dalton , por tanto la composición del gas se relaciona con la composición del líquido por la expresión: . Por lo que la relación entre la presión del gas y su composición vendrá dada por:

El conocimiento de la relación entre la P del sistema y la composición de las dos fases, líquida y gas, permite dibujar el diagrama de fases a T constante:

 

  • Por encima de la línea de vaporización, ej. en el punto A, sólo existe fase líquida.
  • Por debajo de la línea de condensación, baja presión, sólo existe fase gas.
  • La región entre las dos curvas es bifásica, coexisten en equilibrio líquido y vapor.
    En el punto B la mezcla se separa en una fase líquida y otra gaseosa, cuya composición se determina trazando la llamada línea de equilibrio, que representa la presión del sistema y pasa por el punto B. La línea de equilibrio corta la línea de vaporización en el punto L, cuya abcisa determina la composición de la fase líquida x2. La línea de equilibrio corta la línea de condensación en el punto V, cuya abcisa determina la composición de la fase gas y2.

agrama anterior se observa como en el caso de una disolución ideal el vapor se enriquece en el componente más volátil (P°2>P°1 luego a una T y P dada, y2> x2).

Si representamos a P constante, el diagrama de fases temperatura-composición, se observa como la línea de vaporización no es una recta, y que la curvatura de la línea de condensación está invertida respecto al diagrama de fase isotérmico, ya que si P°2>P°1, T°V2<T°V1

 

Esto tiene una importante aplicación, ya que hace posible la separación de líquidos miscibles mediante la destilación. Según el diagrama, si partimos de una disolución ideal de los líquidos 1 y 2, cuya composición sea χ2=0.4, la temperatura de ebullición será la ordenada del punto L. A esa temperatura, la composición del gas se determina por la abcisa del punto V. Como se ve el gas tiene una composición más rica en el componente más volátil, en este caso el 2. Si el gas se separa y se enfría, el condensado será ahora una disolución de composición χ2=0.6. Este líquido puede volver a calentarse hasta su nuevo punto de ebullición, más bajo que el anterior, y tras repetir varias veces el proceso de recogida del vapor, condensación, y reevaporación, se pueden separar los líquidos que formaban la disolución ideal.

  • Relaciones presión-composición y temperatura-composición en disoluciones no-ideales

Muy pocos sistemas forman disoluciones ideales en todo el rango de composición, aunque todas se aproximan al comportamiento ideal cuando están suficientemente diluidas. De hecho se habla de disoluciones diluidas ideales (o idealmente diluidas) cuando la fracción molar del disolvente se aproxima a la unidad, de forma que las moléculas de soluto sólo interaccionan con el disolvente dada su dilución.

En el caso de disoluciones no-ideales el potencial químico se define en función de la actividad (a), que podríamos considerar como una "concentración efectiva" : ; si el μi0es el potencial químico de la sustancia en su estado normal.

  • a = P/P0 en el caso de gases ideales , siendo P° = 1bar
  • a = Pi en el caso de gases ideales en una mezcla
  • a = 1 en el caso de sólidos o líquidos puros, ya que por definición μi=μ°i
  • a = χi en el caso de disoluciones ideales
  • a = γiχi en el caso de disoluciones reales; el coeficiente de actividad, γi es una medida de la discrepancia del comportamiento de la sustancia i respecto a la idealidad.
El modelo de disolución ideal implica que las interacciones entre los componentes de la disolución son idénticas, sin embargo en la mayor parte de los casos, las interacciones intermoleculares en la disolución son más débiles que en los líquidos puros, lo que implica que "las moléculas pueden pasar a la fase gaseosa con mayor facilidad". En estos casos, Pi> Pi ideal, o lo que es lo mismo γi>1. El sistema presenta una desviación positiva de la Ley de Raoult.
El caso opuesto, en el que las interacciones intermoleculares son mayores en la disolución que en los líquidos puros, también es posible. Un caso muy frecuente es el de las disoluciones de sustancias que pueden formar entre si enlaces por puentes de hidrógeno, pero no en los líquidos puros (ej. acetona-cloroformo). En cuyo caso Pi< Pi ideal y γi<1. El sistema presenta una desviación negativa de la Ley de Raoult.
Las desviaciones positivas o negativas de la ley de Raoult llevan implícito que los diagramas de fase líquido-gas de las disoluciones no-ideales sean más complejos. En la imagen se muestran dos ejemplos. En el caso del diagrama de la derecha, correspondiente a la disolución cloroformo-acetona la curva de presión de vapor muestra un mínimo (máximo en la curva de temperatura de ebullición en el diagrama temperatura-composición) en el que la composición de la fase líquida y de la fase gas son idénticas. Estos puntos singulares (pueden ser máximos o mínimos) se denominan puntos azeotrópicos. En las disoluciones que forman azeótropos no es posible separar sus componentes mediante destilación fraccionada.

  • Equilibrio de fases sólido-líquido en sistemas de dos componentes

Por simplicidad, y como en los casos anteriores, supondremos que el sistema está formado por dos componentes totalmente miscibles, y que ninguno de ellos es un electrolito. Convencionalmente llamaremos disolvente (B) al componente más abundante de la disolución, y soluto (A) al componente minoritario, si bien desde un punto de vista termodinámico no sería necesario.

Al enfriar la disolución a presión constante se producirá la solidificación, pero la experiencia diaria muestra que son posibles dos situaciones:

  • Sólido A ←→ líquido (A+B). Al descender la temperatura se alcanza el límite de solubilidad del soluto en el disolvente, dando como resultado A sólido en equilibrio con la disolución saturada de A en B.
  • Sólido B ←→ líquido (A+B). A una determinada temperatura solidifica el disolvente, se ha alcanzado el punto de solidificación de la disolución.

El modelo empleado para tratar ambas situaciones es el mismo. Así, si tomamos por ejemplo el primer caso: en el equilibrio Sólido A ←→ A en disolución, debe cumplirse que los potenciales químicos de A en ambas fases sean iguales, es decir: , o lo que es lo mismo: . En esta expresión, el término de la izquierda corresponde a la diferencia entre la energía libre de Gibbs molar del sólido y del líquido puros en el punto de fusión (Tf), es decir, es la energía libre de fusión ΔGfusión, y por tanto: . Al reagrupar términos se tiene que: ; o en su forma diferencial

Estas últimas ecuaciones indican cómo varía el límite de solubilidad de un soluto o el punto de fusión de una disolución en función de su composición. En el caso de disoluciones ideales aAA, lo que implicaría que a cualquier temperatura la solubilidad de A es la misma, independientemente del disolvente. En el caso de disoluciones reales esto no es cierto ya que el coeficiente de actividad depende de cual sea el disolvente.

 

 

©Derechos reservados "Apuntes Científicos" 2011 - 2012