DIAGRAMAS UNIFILARES

Los diagramas unifilares representan todas las partes que componen a un sistema de potencia de modo gráfico, completo, tomando en cuenta las conexiones que hay entre ellos, para lograr así la forma una visualización completa del sistema de la forma más sencilla. Ya que un sistema trifásico balanceado siempre se resuelve como un circuito equivalente monofásico, o por fase, compuesto de una de las tres líneas y un neutro de retorno, es rara vez necesario mostrar más de una fase y el neutro de retorno cuando se dibuja un diagrama del circuito. Muchas veces el diagrama se simplifica aún más al omitir el neutro del circuito e indicar las partes que lo componen mediante símbolos estándar en lugar de sus circuitos equivalentes. No se muestran los parámetros del circuito, y las líneas de trasmisión se representan por una sola línea entre dos terminales. A este diagrama simplificado de un sistema eléctrico se te llama diagrama unifilar o de una línea. Éste indica, por una sola línea y por símbolos estándar, cómo se conectan las líneas de transmisión con los aparatos asociados de un sistema eléctrico.

El propósito de un diagrama unifilar es el de suministrar en forma concisa información significativa acerca del sistema.

La importancia de las diferentes partes de un sistema varía con el problema, y la cantidad de información que se incluye en el diagrama depende del propósito para el que se realiza. Por ejemplo, la localización de los interruptores y relevadores no es importante para un estudio de cargas. Los interruptores y relevadores no se mostrarían en el diagrama si su función primaria fuera la de proveer información para tal estudio. Por otro lado, la determinación de la estabilidad de un sistema bajo condiciones transitorias resultantes de una falla depende de la velocidad con la que los relevadores e interruptores operan para aislar la parte del sistema que ha fallado. Por lo tanto, la información relacionada con los interruptores puede ser de extrema importancia. Algunas veces, los diagramas unifilares incluyen información acerca de los transformadores de corriente y de potencia que conectan los relevadores al sistema o que son instalados para medición.

Símbolos estándar para los diagramas eléctricos..

Es importante conocer la localización de los puntos en que el sistema se aterriza, con el fin de calcular la corriente que fluye cuando ocurre una falla asimétrica que involucro la tierra El símbolo estándar para designar a una conexión Y trifásica con el neutro sólidamente conectado a tierra. Si una resistencia o reactancia se inserta entre el neutro de la Y y la tierra, para limitar el flujo de corriente a tierra durante la falla, se le pueden adicionar al símbolo estándar de la Y aterrizada los apropiados para la resistencia o la inductancia. La mayoría de los neutros de transformadores de los sistemas de transmisión están sólidamente aterrizados. Por lo general, los neutros de los generadores se aterrizan a través de resistencias razonablemente elevadas y algunas veces a través de bobinas.

Diagrama Unifilar de un sistema eléctrico de Potencia

Este diagrama unifilar es de un sistema de potencia sencillo. Dos generadores uno aterrizado a través de una reactancia y el otro a través de una resistencia están conectados a una barra y por medio de un transformador de elevación de tensión, a una línea de transmisión. El otro generador aterrizado a través de una reactancia se conecta a una barra y por medio de un transformador, al extremo opuesto de la línea de trasmisión. Una carga está conectada en cada barra. Es común dar información sobre el diagrama que esté relacionada con las cargas, los valores nominales de los generadores y transformadores y con las reactancias de los diferentes componentes del circuito.

DIAGRAMAS DE IMPEDANCIA Y REACTANCIA

El diagrama unifilar se usa para dibujar el circuito equivalente monofásico o por fase del sistema, con el fin de evaluar el comportamiento de éste bajo condiciones de carga o durante la ocurrencia de una falta. La figura la siguiente figura se combina los circuitos equivalentes de los diferentes componentes que se muestran en la figura anterior para formar el diagrama de impedancias monofásico del sistema. Si se realiza un estudio de cargas, las cargas en atraso A y B se representan por una resistencia y una reactancia inductiva en serie. El diagrama de impedancias no incluye las impedancias limitadoras de corriente, mostradas en el diagrama unifilar entre los neutros de los generadores y la tierra, porque no fluye corriente a tierra en condiciones balanceadas y los neutros de los generadores están al mismo potencial que el del sistema. Debido a que la corriente de magnetización de un transformador es, por lo general, insignificante con respecto a la corriente de plena carga, el circuito equivalente del transformador omite con frecuencia la rama de admitancia en paralelo.

Cuando se hacen cálculos de fallas, aun usando programas computacionales, es común no considerar la resistencia. Por supuesto, esta omisión introduce algún error, pero los resultados pueden ser satisfactorios ya que la reactancia inductiva de un esquema es mucho mayor que su resistencia. La resistencia y la reactancia inductiva no se suman directamente, y la impedancia no es muy diferente de la reactancia inductiva si la resistencia es pequeña. Las cargas que no involucran maquinaria rotatoria tienen un efecto pequeño en la corriente de línea total durante una falla y generalmente se omiten. Sin embargo, as cargas con motores sincrónicos siempre se toman en cuenta al hacer cálculos de fallas ya que sus fems generadas contribuyen a la corriente de corto circuito. Si el diagrama se ya a usar para determinar la corriente inmediatamente después de que una falla ha ocurrido, se deben tener en cuenta los motores de inducción como si fueran fems generadas en serie con una reactancia inductiva. Los motores de inducción se ignoran cuando se desea calcular la corriente unos pocos cielos después de ocurrida la falla, ya que su contribución decae muy rápidamente al cortocircuitarse el motor

El diagrama de impedancias se reduce al diagrama de reactancias por fase de la Figura anterior, si se decide simplificar el cálculo de la corriente le falla omitiendo todas las cargas estáticas, todas las resistencias, la rama de admitancia en paralelo de cada transformador y la capacitancia de las líneas de trasmisión. A los diagramas de impedancia y de reactancia monofásicos se les llama diagramas monofásicos de secuencia positiva, ya que muestran las impedancias para corrientes balanceadas en una fase de un sistema trifásico simétrico

Normas para Instalaciones Eléctricas

Has click aquí para descargar la NOM referente a la instalación de normas eléctricas.

Instrumentos de medición de energía.


Voltímetro.- Un voltímetro es un instrumento que sirve para medir la diferencia de potencial entre dos puntos de un circuito eléctrico

Para efectuar la medida de la diferencia de potencial el voltímetro ha de colocarse en paralelo; esto es, en derivación sobre los puntos entre los que tratamos de efectuar la medida. Esto nos lleva a que el voltímetro debe poseer una resistencia interna lo más alta posible, a fin de que no produzca un consumo apreciable, lo que daría lugar a una medida errónea de la tensión. Para ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, estarán dotados de bobinas de hilo muy fino y con muchas espiras, con lo que con poca intensidad de corriente a través del aparato se consigue el momento necesario para el desplazamiento de la aguja indicadora.

Figura 1.- Conexión de un voltímetro en un circuito
En la actualidad existen dispositivos digitales que realizan la función del voltímetro presentando unas características de aislamiento bastante elevadas empleando complejos circuitos de aislamiento.
En la Figura 1 se puede observar la conexión de un voltímetro (V) entre los puntos de a y b de un circuito, entre los que queremos medir su diferencia de potencial.
En algunos casos, para permitir la medida de tensiones superiores a las que soportarían los devanados y órganos mecánicos del aparato o los circuitos electrónicos en el caso de los digitales, se les dota de una resistencia de elevado valor colocada en serie con el voltímetro, de forma que solo le someta a una fracción de la tensión total.
A continuación se ofrece la fórmula de cálculo de la resistencia serie necesaria para lograr esta ampliación o multiplicación de escala:
,
donde N es el factor de multiplicación (N≠1)
Ra es la Resistencia de ampliación del voltímetro
Rv es la Resistencia interna del voltímetro

Un amperímetro es un instrumento que sirve para medir la intensidad de corriente que está circulando por un circuito eléctrico. Un microamperímetro está calibrado en millonésimas de amperio y un miliamperímetro en milésimas de amperio.
Si hablamos en términos básicos, el amperímetro es un simple galvanómetro (instrumento para detectar pequeñas cantidades de corriente) con una resistencia en paralelo, llamada electrónica. Disponiendo de una gama de resistencias shunt, podemos disponer de un amperímetro con varios rangos o intervalos de medición. Los amperímetros tienen una resistencia interna muy pequeña, por debajo de 1 ohmio, con la finalidad de que su presencia no disminuya la corriente a medir cuando se conecta a un circuito eléctrico.
El aparato descrito corresponde al diseño original, ya que en la actualidad los amperímetros utilizan un conversor analógico/digital para la medida de la caída de tensión en un resistor por el que circula la corriente a medir. La lectura del conversor es leída por un microprocesador que realiza los cálculos para presentar en un display numérico el valor de la corriente eléctrica circulante.

Para efectuar la medida es necesario que la intensidad de la corriente circule por el amperímetro, por lo que éste debe colocarse en serie, para que sea atravesado por dicha corriente. El amperímetro debe poseer una resistencia interna lo más pequeña posible con la finalidad de evitar una caída de tensión apreciable (al ser muy pequeña permitira un mayor paso de electrones para su correcta medida). Para ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, están dotados de bobinas de hilo grueso y con pocas espiras.
En algunos casos, para permitir la medida de intensidades superiores a las que podrían soportar los delicados devanados y órganos mecánicos del aparato sin dañarse, se les dota de un resistor de muy pequeño valor colocado en paralelo con el devanado, de forma que solo pase por éste una fracción de la corriente principal. A este resistor adicional se le denomina shunt.
Aunque la mayor parte de la corriente pasa por la resistencia de la derivación, la pequeña cantidad que fluye por el medidor sigue siendo proporcional a la intensidad total por lo que el galvanómetro se puede emplear para medir intensidades de varios cientos de amperios.
La pinza amperimétrica es un tipo especial de amperímetro que permite obviar el inconveniente de tener que abrir el circuito en el que se quiere medir la intensidad de la corriente.

Figura 1.- Conexión de un amperímetro en un circuito
En la Figura 1 mostramos la conexión de un amperímetro (A) en un circuito, por el que circula una corriente de intensidad (I), así como la conexión del resistor shunt (RS).
El valor de RS se calcula en función del poder multiplicador (n) que queremos obtener y de la resistencia interna del amperímetro (RA) según la fórmula siguiente:

Así, supongamos que disponemos de un amperímetro con 5 Ω de resistencia interna que puede medir un máximo de 1 A (lectura a fondo de escala). Deseamos que pueda medir hasta 10 A, lo que implica un poder multiplicador de 10. La resistencia RS del shunt deberá ser:

Un óhmetro, Ohmnímetro, u Ohmniómetro es un instrumento para medir la resistencia eléctrica.
El diseño de un óhmnimetro se compone de una pequeña batería para aplicar un voltaje a la resistencia bajo medida, para luego, mediante un galvanómetro, medir la corriente que circula a través de la resistencia.
La escala del galvanómetro está calibrada directamente en ohmios, ya que en aplicación de la ley de Ohm, al ser el voltaje de la batería fijo, la intensidad circulante a través del galvanómetro sólo va a depender del valor de la resistencia bajo medida, esto es, a menor resistencia mayor intensidad de corriente y viceversa.
Existen también otros tipos de óhmetros más exactos y sofisticados, en los que la batería ha sido sustituida por un circuito que genera una corriente de intensidad constante I, la cual se hace circular a través de la resistencia R bajo prueba. Luego, mediante otro circuito se mide el voltaje V en los extremos de la resistencia. De acuerdo con la ley de Ohm el valor de R vendrá dado por:

Para medidas de alta precisión la disposición indicada anteriormente no es apropiada, por cuanto que la lectura del medidor es la suma de la resistencia de los cables de medida y la de la resistencia bajo prueba.
Para evitar este inconveniente, un óhmetro de precisión tiene cuatro terminales, denominados contactos Kelvín. 2 terminales llevan la corriente constante desde el medidor a la resistencia, mientras que los otros dos permiten la medida del voltaje directamente entre terminales de la misma, con lo que la caída de tensión en los conductores que aplican dicha corriente constante a la resistencia bajo prueba no afecta a la exactitud de la medida

 

.